# Fraction calculator

The calculator performs basic and advanced operations with fractions, expressions with fractions combined with integers, decimals, and mixed numbers. It also shows detailed step-by-step information about the fraction calculation procedure. Solve problems with two, three, or more fractions and numbers in one expression.

## Result:

### 5 1/4 * 1 3/8 = 231/32 = 7 7/32 = 7.21875

Spelled result in words is two hundred thirty-one thirty-seconds (or seven and seven thirty-seconds).### How do you solve fractions step by step?

- Conversion a mixed number 5 1/4 to a improper fraction: 5 1/4 = 5 1/4 = 5 · 4 + 1/4 = 20 + 1/4 = 21/4

To find a new numerator:

a) Multiply the whole number 5 by the denominator 4. Whole number 5 equally 5 * 4/4 = 20/4

b) Add the answer from previous step 20 to the numerator 1. New numerator is 20 + 1 = 21

c) Write a previous answer (new numerator 21) over the denominator 4.

Five and one quarter is twenty-one quarters - Conversion a mixed number 1 3/8 to a improper fraction: 1 3/8 = 1 3/8 = 1 · 8 + 3/8 = 8 + 3/8 = 11/8

To find a new numerator:

a) Multiply the whole number 1 by the denominator 8. Whole number 1 equally 1 * 8/8 = 8/8

b) Add the answer from previous step 8 to the numerator 3. New numerator is 8 + 3 = 11

c) Write a previous answer (new numerator 11) over the denominator 8.

One and three eighths is eleven eighths - Multiple: 21/4 * 11/8 = 21 · 11/4 · 8 = 231/32

Multiply both numerators and denominators. Result fraction keep to lowest possible denominator GCD(231, 32) = 1. In the following intermediate step, the fraction result cannot be further simplified by canceling.

In other words - twenty-one quarters multiplied by eleven eighths = two hundred thirty-one thirty-seconds.

#### Rules for expressions with fractions:

**Fractions**- use the slash “/” between the numerator and denominator, i.e., for five-hundredths, enter

**5/100**. If you are using mixed numbers, be sure to leave a single space between the whole and fraction part.

The slash separates the numerator (number above a fraction line) and denominator (number below).

**Mixed numerals**(mixed fractions or mixed numbers) write as non-zero integer separated by one space and fraction i.e.,

**1 2/3**(having the same sign). An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both signs for fraction line and division, we recommended use colon (:) as the operator of division fractions i.e.,

**1/2 : 3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

The colon

**:**and slash

**/**is the symbol of division. Can be used to divide mixed numbers

**1 2/3 : 4 3/8**or can be used for write complex fractions i.e.

**1/2 : 1/3**.

An asterisk

*****or

**×**is the symbol for multiplication.

Plus

**+**is addition, minus sign

**-**is subtraction and

**()[]**is mathematical parentheses.

The exponentiation/power symbol is

**^**- for example:

**(7/8-4/5)^2**= (7/8-4/5)

^{2}

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• exponentiation of fraction: 3/5^3

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction: 4/22

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

Be careful, always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) has the same priority and then must evaluate from left to right.

## Fractions in word problems:

- Dividends

The three friends divided the win by the invested money. Karlos got three-eighths, John 320 permille, and the rest got Martin. Who got the most and which the least? - Torque

Torque and Mari each multiplied 1/8 inch times 5/8 inch. Tartaric 5/8 squares point inches. And Marie got 5/64 squared thought inches tall. Which student found a corrupt area? - Ten fractions

Write ten fractions between 1/3 and 2/3 - Comparing and sorting

Arrange in descending order this fractions: 2/7, 7/10 & 1/2 - Troops

The route is long 147 km and the first-day first regiment went at an average speed of 12 km/h and journey back 21 km/h. The second day went second regiment the same route at an average speed of 22 km/h there and back. Which regiment will take route longer - Equivalent fractions

Are these two fractions equivalent -4/9 and 11/15? - Turtles 2

A box turtle hibernates in the sand at 11 5/8. A spotted turtle hibernates at 11 16/25 feet. Which turtle is deeper? Write answer as number 1 or 2. - Giraffes to monkeys

The ratio of the number of giraffes to the number of monkeys in a zoo is 2 to 5. Which statement about the giraffes and monkeys could be true? A. For every 10 monkeys in the zoo, there are 4 giraffes. B. For every giraffe in the zoo, there are 3 monkeys. - Equivalent expressions

A coach took his team out for pizza after their last game. There were 14 players, so they had to sit in smaller groups at different tables. Six players sat at one table and got 4 small pizzas to share equally. The other players sat at the different table - A laundry

Mr. Green washed 1/4 of his laundry. His son washed 3/7 of it. Who washed most of the laundry? How much of the laundry still needs to be washed? - Math test

Brayden was solving some math problems for the math team. He answered 2 math problems. Matthew answered 3, John answered 1 reasoning. Matthew 1/2 times as many. Brayden said that 2/6. Is he correct? Why or why not? Be sure to explain your answer. - Sort fractions

Which of the following fractions is the largest? 29/36 5/6 7/9 3/4 - Luke

Luke, Seth, and Anja have empty glasses. Mr. Gabel pours 3/6 cup of orange juice in Seth's glass. Then he pouts 1/6 cup of orange juice in Luke's glass and 2/6 cup of orange juice in Anja's glass. Who gets the MOST orange juice?

next math problems »